Source waters and flow paths in an alpine catchment, Colorado Front Range, United States

نویسندگان

  • Fengjing Liu
  • Mark W. Williams
  • Nel Caine
چکیده

[1] Source waters and flow paths of streamflow draining high-elevation catchments of the Colorado Rocky Mountains were determined using isotopic and geochemical tracers during the 1996 snowmelt runoff season at two subcatchments of the Green Lakes Valley, Colorado Front Range. A two-component hydrograph separation using dO indicates that new water dominated (82 ± 6%) streamflow at the 8-ha Martinelli catchment and old water dominated (64 ± 2%) at the 225-ha Green Lake 4 (GL4) catchment. Snowmelt became isotopically enriched as the melt season progressed, complicating the interpretation of source water models. Thus old water may be underestimated if the temporal variation in dO of snowmelt is ignored or extrapolated from point measurements to the catchment. Two-component hydrograph separations for unreacted and reacted waters using a single geochemical tracer were not always meaningful. Three-component hydrograph separations using end-member mixing analysis indicated that subsurface flow contributed more than two thirds to the streamflow at both catchments. Talus fields contributed more than 40% of the total discharge during summer at the GL4 catchment. A conceptual model was established for flow generation based on these results. It is suggested that surface water and groundwater interactions are much more important to the quantity and quality of surface water in high-elevation catchments than previously thought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sources and chemical character of dissolved organic carbon across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States

[1] We investigated how the source and chemical character of aquatic dissolved organic carbon (DOC) change over the course of the runoff season (May–November, 1999) in Green Lakes Valley, a high-elevation ecosystem in the Front Range of the Colorado Rocky Mountains. Samples were collected on North Boulder Creek from four sites across an alpine/subalpine ecotone in order to understand how the tr...

متن کامل

Mineral nitrogen transformations in and under seasonal snow in a high-elevation catchment in the Rocky Mountains, United States

In an effort to understand sources of nitrate (NO•-) in surface waters of highelevation catchments, nitrogen (N) transformations in and under seasonal snow were investigated from 1993 to 1995 on Niwot Ridge, an alpine ecosystem at 3,500 rn located in the Colorado Front Range of the Rocky Mountains. Ammonium (NH•-) and NO•labeled with •5N applied as nonconservative tracers to the snow showed no ...

متن کامل

Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes

Dissolved organic matter (DOM) is an important vehicle for the movement of nutrients from terrestrial to aquatic systems. To investigate how the source and composition of aquatic DOM change in both space and time, we used chemical, spectroscopic, and isotopic analyses to characterize DOM in a headwater catchment in the Colorado Front Range. Streamwater samples for DOM analyses were collected fr...

متن کامل

Geochemistry and Source Waters of Rock Glacier Outflow, Colorado Front Range

We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine...

متن کامل

Estimating stream chemistry during the snowmelt pulse using a spatially distributed, coupled snowmelt and hydrochemical modeling approach

[1] We used remotely sensed snow cover data and a physically based snowmelt model to estimate the spatial distribution of energy fluxes, snowmelt, snow water equivalent, and snow cover extent over the different land cover types within the Green Lakes Valley, Front Range, Colorado. The spatially explicit snowpack model was coupled to the Alpine Hydrochemical Model (AHM), and estimates of hydroch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004